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 Introduction
The recent advances in artificial intelligence (AI) have been both revolutionary and 
transformative across several domains, and education was not an exception (Došilović 
et  al., 2018). Several studies have indicated the potential of AI in providing personal-
ized feedback, enhancing students’ reflection, and offering individualized recommen-
dations and personalized reports (Khosravi et al., 2022). As we currently stand, AI has 
been used in numerous applications and extended to all areas of teaching and learning 
(Ilkka, 2018). For instance, AI has been used to offer support for students’ learning in 
academic writing, language, science and mathematics. AI has also been used to auto-
mate grading, provide real-time feedback, and analyze students’ performance data to 
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guide instructional adjustments, making assessments more scalable and less demand-
ing (Nagy & Molontay, 2023; Saqr et  al., 2024). AI has also been used to personalize 
learning and adapt content to students’ needs  to offer a more inclusive learning envi-
ronment (Khosravi et  al., 2022). AI also has been used to offer support through chat-
bots, virtual assistants and AI tutors. Indeed, the scale of AI applications is widening 
to most areas of education technology and research and practice as well as in analyz-
ing students’ data, predicting performance and forecasting outcomes (Jang et al., 2022; 
Khosravi et  al., 2022). While initially encouraging, several concerns have been raised 
regarding fairness, bias and transparency (Bernard & Balog, 2023). As such, an increas-
ing number of studies are emerging using explainable AI techniques that explicitly show 
which factors are involved in the prediction and their relative importance (Adnan et al., 
2022; Nagy & Molontay, 2023; Saqr et al., 2024). In doing so, learners and teachers are 
offered the opportunity to understand the “behind the scenes” process of predictions 
and more importantly, use this information as a ground for feedback for students (Khos-
ravi et al., 2022). For instance, in a predictive model designed to predict students’ final 
course grades, the algorithm will show the variables that have contributed to the positive 
outcome, e.g., regular course work, practicing formative assessment, or reading course 
materials (Khosravi et al., 2022); teachers can use this information to guide students and 
make future decisions regarding course design. Nevertheless, AI explanations are always 
offered from the aggregate data of all the students (i.e., at the dataset level) and there-
fore, offer the “average” overall picture (Saqr et al., 2024). Whereas the average gives an 
idea about what works for most students (i.e., feature importance), it does not reflect 
or capture the individual differences or the variability among students (Bobrowicz et al., 
2024; Malmberg et al., 2022). Put another way, aggregate predictions are accurate in gen-
eral but not accurate in any particular case. Therefore, instance-level predictions—where 
explanations for each particular student are presented according to their own data—can 
help understand how and why predictions were estimated and how a student or teacher 
may act (Jang et al., 2022; Nagy & Molontay, 2023). This study aims to examine the util-
ity of individualized instance-level predictions, their value in informing decision-mak-
ing, and—more importantly—how they can be used to offer feedback. Furthermore, the 
study examines mispredictions, their explanations, and how they may—or may not—
affect decision-making.

Background
Prediction in education

Predicting students’ performance has been a goal for educational researchers for several 
decades. The premise is that, if we can identify students who face problems or are lag-
ging behind, we can initiate a proactive intervention when it matters (Saqr et al., 2022). 
At the turn of the twenty-first century, the widespread digitization of education and the 
emergence of the learning analytics field stimulated a remarkable surge in forecasting 
students’ future performance (McCalla, 2023). The interest was further motivated by 
the rapid progress in AI—and more specifically machine learning (ML)—and the suc-
cessful applications in the industry (Ilkka, 2018). The initial application of ML in learn-
ing analytics had a focus on optimizing accuracies and model performance metrics and 
indeed several studies have demonstrated remarkable performances (Adnan et al., 2022; 
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Jang et al., 2022; Nagy & Molontay, 2023). Nonetheless, accurate predictive models are 
rather problematic if they are an opaque “black box” with no insights into why or how 
they have produced such predictions (Khosravi et al., 2022). Further, for stakeholders to 
entrust a system, they have to understand how the decisions are made and most impor-
tantly, these decisions need to be ethical, fair, transparent, and accountable (Bernard & 
Balog, 2023). Therefore, attention was diverted to the alignment of ML with learning 
theories and the value of predictions in offering teachers and learners alike with neces-
sary tools for feedback through transparent explainable algorithms.

Misprediction

Misprediction occurs when algorithms inaccurately predict student performance, 
behavior, needs or misclassify students in the wrong category (Biecek, 2018). Such 
flawed algorithmic predictions would result in misguided instructional decisions, need-
less interventions or wrong recommendations to mention a few (Baker & Hawn, 2022; 
Barredo Arrieta et al., 2020; Kordzadeh & Ghasemaghaei, 2022). Several factors contrib-
ute to misprediction that include poor data quality, biased datasets, and limitations in 
modeling techniques (Baker & Hawn, 2022). Also, some algorithms may not be able to 
capture the complex nature of educational data leading to inaccuracies (Barredo Arrieta 
et al., 2020; Biecek, 2018). As the use of algorithms increases in educational technolo-
gies, it is only expected that mispredictions will be everywhere. Even when algorithms 
improve or accuracy increases, they will not be perfect, and some students may pay the 
prices (Baker & Hawn, 2022).

Therefore, identifying mispredictions, and understanding why mispredictions hap-
pen would allow researchers to improve fairness of data-driven decision-making which 
would eventually results in a more fair and personalized learning process (Khosravi et al., 
2022). This would also result in refining instructional strategies to ensure that interven-
tions are more effectively targeted to students’ diverse needs and individual differences 
(Ilkka, 2018). In doing so, we can avoid unnecessary support, missed opportunities for 
help or applying the wrong type of support or recommendations. Furthermore, students’ 
trust and acceptance of AI would increase, their reliance on technology will also increase 
resulting in more adoption as well as possible better outcomes (Barredo Arrieta et al., 
2020; Kordzadeh & Ghasemaghaei, 2022).

When we reduce misprediction, we essentially reduce bias and inequities by ensuring 
that predictive tools work well across diverse student populations (Barredo Arrieta et al., 
2020). Furthermore, identifying mispredictions promotes a more balanced integration of 
AI into education, where algorithms are used not as definitive solutions but as tools to 
complement teachers’ expertise. All the more so, identifying the sources of bias, and the 
students who are likely to be impacted by bias (Barredo Arrieta et al., 2020; Kordzadeh & 
Ghasemaghaei, 2022).

 Explainable AI

A wide consensus in the AI community is that the higher the accuracy of an AI model 
(e.g., deep learning), the more likely the model is to be opaque and—consequently—the 
less likely it is to be interpretable, entrusted, or justifiable. Yet, it is no longer an option 
to trade accuracy for interpretability (Bernard & Balog, 2023). Therefore, researchers 
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resorted to either using transparent explainable models (the model is understandable 
by itself ) or using mechanisms to augment models with explanations (Biecek & Bur-
zykowski, 2021). White-boxing aims to extract information from the model, such as 
variable importance, visualizing the contribution of variables to aid the interpretability 
of the model (Khosravi et al., 2022). Offering interpretability can be done at the whole 
dataset level, referred to as global explainability (e.g., course, school, or cohort) level; or 
at the single instance level, referred to as local explainability—or instance-level explain-
ability—(e.g., a student) (Biecek, 2018). Besides offering information about how and 
why AI decisions were made, instance-level explainability allows us to know which vari-
ables may affect the decisions if acted upon. For instance, what happens if the students 
get more engaged in coursework? And to what extent might that affect their grades? 
More importantly, an instance-level explanation offers a clue as to why mispredictions 
happened, be it an optimistic overestimate or a biased underestimate (Biecek & Bur-
zykowski, 2021).

 Explainable AI in education

Examples of explainable AI in the literature are emerging with a focus on predictions 
at the course level using inherently explainable algorithms, such as decision trees, and 
offering global explanations (Khosravi et al., 2022). Nevertheless, research with a focus 
on local interpretability is rather rare in the literature despite the important implica-
tions and benefits it could offer. A few examples can be seen here in the work by Jang 
et  al. (2022), who studied data from seven Korean courses and visualized two cases 
where students were classified at-risk using SHapley Additive exPlanation. The visualiza-
tion showed low engagement with homework was the most important variable in both 
cases. Similar example cases using the SHapley algorithm were visualized by Nagy and 
Molontay (2023) to explain student dropout. Some other examples using local explana-
tions used subsets of the dataset, e.g., students who improved vs. not (Lin et al., 2023), 
or students who failed (Adnan et al., 2022). To that end, it is clear that the potential of 
single-instance explanation has been barely harnessed and only regarding examples 
of explainability. Yet, explaining misprediction and more importantly, how algorithms 
could offer a clue of what to improve to help students attain their desired outcome has 
not been explored.

The current study

Given the increasing reliance on AI, there is a pressing need for humanizing AI to be fair, 
transparent, and explainable and, in particular, a need to understand when a prediction 
or decision made by AI is correctly or incorrectly made and why. If an AI explanation 
is provided, it is necessary to know how it is justified, or if it is reasonable enough to be 
acted upon by a human, for instance, in an intervention. In this study, we use the SHap-
ley Additive exPlanation (SHAP) method, a method based on game theory principles, 
to examine the correctly and incorrectly predicted cases (i.e., to offer local explanations 
for such cases) and to understand how and why prediction and misprediction happened 
(Lin et al., 2023; Nagy & Molontay, 2023). SHAP works by averaging the contribution of 
variables over several possible orderings to compute the “additive contribution” of the 
given variables and minimize the possible role of interactions (Strumbelj & Kononenko, 
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2010). We further use ceteris-paribus plots (a type of partial dependence plots) to deter-
mine the influence of individual variables on the outcome. Ceteris-paribus plots estimate 
what happens when a variable changes while all others are held constant (which is ceteris 
paribus in Latin). We use ceteris-paribus plots to examine if and to what extent AI-gen-
erated recommendations work in both correctly and incorrectly predicted cases (Biecek, 
2018).

 Motivation of the study

While explainable AI has been increasingly adopted to understand and predict student 
performance, there is a significant gap in investigating the limitations thereof and why 
these limitations take place. Attention has always been directed to what algorithms can 
achieve, not to when and why they un-achieve (e.g., mispredict). We have limited knowl-
edge of the products of mispredictions, the decisions that may be based on them, and 
how they may affect educational practice. Even in the few instances in which mispredic-
tions are studied, they are studied on the aggregate levels (across the whole dataset level) 
overlooking the instance or individualized impact of mispredictions. This study aims to 
address these gaps by examining the utility of individualized instance-level predictions 
and exploring how mispredictions may impact decision-making and feedback mecha-
nisms. To that end, this study aims to answer the following research questions:

RQ1: Using explainable AI, to what extent can we predict students’ performance? And 
to what extent can the AI recommendations be used as feedback?

RQ2: In cases where AI mispredicts students’ performance, what are the factors behind 
mispredictions and how useful are AI recommendations in cases of misprediction?

Methods
Context

The dataset in this study comes from a course that teaches the subject of growth and 
human development to first-year medical students. The course teaches basic medi-
cal science subjects (anatomy, histology, physiology, and pathology) related to human 
growth (childhood, adulthood, reproduction, etc.). To integrate these subjects together, 
the program uses problem-based learning (PBL) as the pedagogical approach. In PBL, 
students are given weekly clinical scenarios (referred to as problems) that, for instance, 
tell a patient’s story of a child growing up with references to different aspects of child 
development and related issues. The problems are ill-structured by design, requiring 
students to go through a series of steps of reading, brainstorming, discussing solutions, 
and reflecting on the process. Most of the process occurs online, except for an intro-
ductory meeting where the students read the problem together and discuss vocabulary 
and objectives, and an end-of-week meeting where they reflect on their solutions and 
the process. Whereas the program is a blended learning program, the Learning Man-
agement System (LMS) is the main platform for conducting online PBL, delivery of the 
lectures, support as well as formative assessment.

Data collection

The data collection was operationalized following the literature on online engage-
ment which entails collection of traces of students’ online learning. In particular, the 
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Interactive, Constructive, Active, and Passive (ICAP) framework offers an intuitive con-
ceptual model for explaining learning outcomes using different engagement levels (Chi 
& Wylie, 2014). In that, deeper levels of engagement are associated with better learning 
and so it is expected that learning increases according to engagement from “passive to 
active to constructive to interactive, their learning will increase” (Chi & Wylie, 2014). 
Therefore, actions were coded to make the logs more meaningful and interpretable and 
to combine similar activities (e.g., “open quiz”, “navigate quiz”, and “attempt quiz” were 
all coded as “evaluate”).

The fully coded activities and their meaning are explained in Table 1. Codes such as 
“construct” can be thought of as belonging to the interactive constructive end of the 
spectrum; “formative”, “number of sessions”, and “active days” belong to the active cat-
egory, and, lastly, “evaluate”, “course view”, “read PBL” and “learning resources” belong to 
the passive category. Further, while most of the engagement indicators are counts of the 
number of times each action was performed in the LMS, the “session counts”, the “active 
days”, and the “duration” of the total time working online have been computed based on 
the timestamps of the logged actions. The course outcome was operationalized as the 
final grade of the course exam which tests what students have learned through a well-
balanced multiple-choice examination.

Data processing

The course was divided into two equal periods and data up to the mid-course was 
used for the prediction task given the aim of early prediction where proactive action is 
possible.

The following variables were used as predictors: Course view, Construct, Read 
PBL, Formative, Evaluate, Learning resources, Duration, Session count, Active days, 

Table 1  Description of the Moodle LMS actions available in the trace data and computed 
engagement indicators

Frequency of actions Description

 Course view Number of times a student views the course main page, which contains 
links to learning resources, discussions, and all other learning activities, as 
well as announcements and updates.

 Evaluate Number of times a student interacts with the formative quizzes.

 Instructions Number of times a student accesses the course instructions, guides or 
course booklet

 Learning resources Number of times a student accesses to all learning materials e.g., lectures, 
learning links, videos, pages, or videos.

 Construct Number of times a student composes a PBL post .

 Read PBL Number of times a student reads the PBL posts by other students.

 Socialize Number of times a student interacts in non-learning forums e.g., talks about 
life events.

 Support Number of times a student poses queries in the support discussions or 
reads posts posed by their classmates.

 Computed engagement indicators

 Duration The total time of time spent on online learning activities.

 Session count The number of sessions a student makes while learning (a session is an 
interrupted time spent on learning activities).

 Active days The number of days a student has accessed using learning activities.

 Formative Grades in formative assessment
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Instructions, Support, and Socialize. Table 2 shows the descriptive statistics of the LMS 
actions and computed engagement indicators. The data was partitioned into training 
(0.7) and testing sets (0.3).

Data analysis

ML algorithms

Five common ML algorithms were used for the task of predicting student performance:

(1)	 Random Forest: Random Forest (RF) is a type of ensemble algorithm. This means 
that, instead of using a single model (like one decision tree), it computes a large 
number of decision trees and averages the prediction of individual trees as the final 
result. This process makes it less sensitive to noisy data, and less prone to overfit-
ting (Hastie et al., 2009). RF can be used both for classification and for regression 
(such as in our case). There are many instances of their use in education research 
for predicting students’ grades (Alamri et  al., 2020; Nachouki et  al., 2023). We 
implemented RF in our analysis through the R package randomForest (Liaw & Wie-
ner, 2002).

(2)	 XGBoost: eXtreme Gradient Boosting—or most commonly XGBoost—is a gradient 
boosting algorithm that builds several decision trees to form an ensemble where 
each tree builds on the results of the former trees and the final results are com-
puted by combining all tree predictions (Chen & Guestrin, 2016). The main differ-
ence with RF is that XGBoost builds trees sequentially, with each new tree trying 
to correct the errors made by the previous trees. XGBoost has started to be used in 
educational research in the last few years, mostly to predict student performance 
(Asselman et al., 2021; Yan, 2021). We have implemented XGBoost in our analysis 
through the R package xgboost (Chen et al., 2024).

(3)	 Neural networks: Neural networks are a class of models inspired by the structure 
of the human brain. In its simplest form, a neural network consists of input nodes, 
which correspond to the features in your data, and output nodes, which produce 
the final prediction. These nodes are connected through weights that represent the 

Table 2  Descriptive statistics of the predictors

Predictor M SD

Course view 37.28 28.11

Evaluate 7.69 7.04

Instructions 8.05 5.16

Learning resources 15.07 8.42

Construct 13.15 13.21

Read PBL 87.05 74.72

Socialize 2.98 3.56

Support 1.23 2.55

Duration 21,665.71 21,328.22

Session count 29.26 16.49

Active days 11.75 3.36

Formative 5.18 5.31
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strength of connections between them. Neural networks have been operationalized 
in education research to evaluate team collaboration (Barmaki & Guo, 2020) and, 
of course, to predict student performance (Thomas & Ali, 2020). We have imple-
mented XGBoost in our analysis through the R package parsnip (Kuhn & Vaughan, 
2023).

(4)	 Linear regression: Linear regression is one of the most basic techniques for statisti-
cal modeling and ML. It works by finding a line of best fit that predicts the rela-
tionship between a dependent variable and one or more independent variables (fea-
tures). Linear regression has been used in educational research in many ways, but 
mostly for performance prediction, just like the other methods (Saqr et al., 2017). In 
this analysis, we have used the base R implementation of linear regression through 
the lm function.

(5)	 Support Vector Machine. Support Vector Machine (SVM), which works similarly 
linear regression to find a function that represents the association between the pre-
dictors and the predicted outcome, while minimizing errors (Biecek & Burzykowski, 
2021). The difference with linear regression is that SVM tries to fit the best line 
within a margin of tolerance around the predicted values, focusing on keeping the 
prediction errors within a defined range. The use of SVM in education research in 
general, and in performance prediction specifically, has been widespread (Alamri 
et al., 2020). In our analysis, we implemented SVM through the e1071 R package 
(Meyer et al., 2023).

Explainable AI

The training data was used to fit an ML model using each of the algorithms 
described in the previous subsection. The performance of the five algorithms was 
computed using the test data (30% of the original dataset) and compared using the 
following performance measures: Mean Squared Error (MSE) and Mean Abso-
lute Deviation (MAD), Root Mean Squared Error (RMSE), and the Coefficient of 
Determination (R-squared or R2). Further, the residuals of the five algorithms were 
plotted and compared to evaluate the performance of the algorithms and select the 
best-performing one.

Model explainability was carried out using the DALEX package (Biecek, 2018), 
which provides diagnostic tools to explore and explain the models. Variable impor-
tance was estimated using the RMSE loss function which quantifies the magnitude 
of loss of RMSE if the target variable was removed. When important variables are 
removed, model performance worsens. The process was repeated thousands of times 
to quantify the average variable importance over multiple permutations (Biecek, 
2018).

Local explainability was estimated using the Shapley additive values. Given that 
SHAP can be affected by the order, the predictors were ordered according to the 
ICAP engagement framework (i.e., from constructive to passive). Further, we per-
muted the values 1000 times to compute the average contribution and eliminate the 
possible ordering problem (Biecek & Burzykowski, 2021).
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Results
RQ1: general model results

As a first step, the five models were compared based on performance to select the 
best-performing model. The XGBoost model had the most samples with the lowest 
levels of residuals, but a small share of samples had very high levels. The Random For-
est model had the most consistent low levels of residuals. Figure  1 (right) confirms 
these findings by showing the box plot of the residual distributions for each model. 
The Random Forest algorithm shows the lowest mean residual (RMSE), followed 
by SVM, linear regression, and XGBoost (though XGboost had the lowest median), 
whereas the single-layer neural network shows the highest mean residual. Figure  1 
shows the results of the residual analysis for each of the five algorithms. Figure 1 (left) 
shows the reverse cumulative distribution plot where it can be seen that a large num-
ber of samples in the neural network model had large residuals.

Regarding accuracy measures (Table 3), Random Forest (in bold) was the best per-
forming algorithm, with the lowest MSE, RMSE, and MAD, and the highest—by far—
R-squared and therefore was selected for the analysis.

Explaining predictions using RF

 Regarding variable importance, examining the loss of RMSE (using 1000 permuta-
tions with boxplots), the RF model showed that formative grades, the number of posts 
(i.e., construct), and viewing the instructions as well as learning resources were the 
most important predictors. Other predictors such as using support forums, social-
izing, number of active days, duration of online work, and using the quiz module 
(i.e., evaluate) were far less important. The Shapley values in Fig. 2 show each of the 
predictors’ contributions to each instance (student in the testing dataset). Obviously, 

Fig. 1  Residual analysis for the five algorithms

Table 3  Performance comparison of the five algorithms

Metric Random forest Linear regression XGBoost Neural network SVM

MSE 117.54 155.52 169.54 149.02 127.89

RMSE 10.84 12.47 13.02 12.21 11.31

R2 0.3 -0.06 -0.16 -0.02 0.13

MAD 6.65 8.65 8.06 7.98 10.22
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there are wide variations between the students in some variables. For example, forma-
tive assessment shows a wide variance: on one end, few students scored high in their 
formative assessment quizzes, and, therefore, formative assessment as a predictor 
contributed significantly to their predictions. Similarly, albeit with lower variance, the 
construct predictor varied moderately between students.

Acting on explanations

More important than explaining the reasons behind a certain prediction is to show 
which variables could be manipulated (changed) to improve the chance of a positive pre-
diction (success in our case). Partial dependence plots (or ceteris-paribus plots) of each 
variable are plotted in Fig. 3. Partial dependence plots show what happens if a given vari-
able is changed (i.e., increased) while all other variables are held constant. Put another 

Fig. 2  Distribution of RMSE and of SHAP contribution for each engagement indicator across students

Fig. 3  Partial dependence plots, each line represents percentile, the x-axis represents the number of 
activities, the y-axis represents the expected grade. The gray histogram on each plot represents the actual 
distribution of values
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way, in the hypothetical scenario that a student increases learning activity, would the 
probability of a better grade improve? If so, to what extent? As Fig. 3 shows, increasing 
the construct variable could potentially increase students’ grades: the increase is steep 
and gradual till around 20 posts and then a plateau is reached. Likewise, an increase in 
grades is associated with an increase in formative assessment and learning resources. 
Similarly, though with lower magnitude, active days and session count variables show 
similar very gradual curves. Duration and reading PBL show flat curves, whereas evalu-
ate, and instructions show increasing these variables may worsen grades, or rather dis-
tract students from the more meaningful activities.

RQ2: explaining misprediction

Whereas the average predictions were useful, they—as any other predictive models—are 
far from perfect. In that, an algorithm always generates accurate and inaccurate predic-
tions, the former is well-studied and the latter is barely studied. All the more so, we are 
interested in understanding why and how students were mispredicted and if the ceteris-
paribus plots give useful information about what is recommended for improvement and, 
in the case where the students were mispredicted, what kind of recommendations are 
given.

We start here with students (n = 6) who were mistakenly predicted to have higher 
grades than they ended up having in reality. We use a threshold of more than 10% differ-
ence between the predicted and observed grades. We chose the 10% threshold because 
in our context, we use a letter grading system, a 10% change means completely changing 
the student grade one full letter grade from A to B for example, or C to D, or even D to F 
which results in significant consequences regarding graduation and later training oppor-
tunities. The predicted grade mean was 60.5, SD = 5.1, and the actual grade mean = 44.8, 
SD = 6.7. The waterfall plot (Fig. 4) on the left side shows that these students typically 
attained positive prediction based on their engagement indicators that were mostly pas-
sive according to the ICAP framework (e.g., viewing learning resources, reading PBL, 
reading instructions, and duration). Typically, these students did worse on formative or 

Fig. 4  Waterfall plot (left) and ceteris-paribus plot (right) of the students whose grade was mispredicted as 
higher than it actually was
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construct activities which are closer to the positive side of the spectrum. Interestingly, 
they were also predicted higher for navigating the quiz (evaluate) which does not nec-
essarily imply taking it. The ceteris-paribus plot (Fig. 4 - right) shows each student and 
their expected change in grades when increasing their activities. In general, the trends 
are similar to the overall model, however, individually, some curves are flat and thus not 
useful for some students, e.g., S122 (more detailed in Fig. 5) whose predicted grade was 
69.7 where the actual grade was 57. In that sense, recommendations based on explain-
able interpretable AI can be inadequate. In other cases, such as S42—who was predicted 
59 where the actual grade was 39—, the suggestions were more aligned with the general 
model (Fig. 6).

Mispredicted lower

Students who had their grades predicted pessimistically lower than their observed 
grades (10% difference) were grouped together in this category. The predicted grade 
mean was 63.75, SD = 4.85 and the actual grade was 79.43, SD = 6.45, i.e., these students 
scored in the highest range. According to Shapley values, the predicted grades decreased 

Fig. 5  Waterfall plot (left) and ceteris paribus plot (right) of student S122 who obtained a grade of 57 
whereas the prediction by Random Forest was 69.66

Fig. 6  Waterfall plot (left) and ceteris paribus plot (right) of student S42 who obtained a grade of 39 whereas 
the prediction by Random Forest was 59.1
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because of fewer interactions with the quiz modules (i.e., evaluate) although the mispre-
dicted formative assessment grades were the highest positive variable that contributed 
to the grades. Furthermore, grades were predicted lower partially due to lower posting 
activity (i.e., construct). Other activities that increased the predicted grades include the 
learning resources, the instruction, and the session count. In other words, the students 
in this group did not conform to the general picture and therefore, were offered wrong 
underestimates of their grades. The ceteris-paribus plots show mostly flat lines (notice 
the points of the students’ position). In that sense, one can observe that students who 
were mispredicted around the average may not benefit at all from AI-based suggestions 
(Fig. 7).

Discussion
The quest to harness the power of AI has been accelerating over the past two decades. 
Yet, haste led to a troubled path paved with costly consequences in terms of human suf-
fering, bias, and wasted resources (Kordzadeh & Ghasemaghaei, 2022). Thereupon, the 
development of interpretable, fair and just ML was born out of the necessity of ethical 
and transparent AI (Baker & Hawn, 2022; Bernard & Balog, 2023). Our study is a step in 
the interpretability direction. We aimed to explore if and to what extent explainable AI 
models can help understand students’ performance. In particular, we focus on instance-
level predictions, mispredictions, and recommendations. This is because instance-level 
interpretability could help teachers offer individualized feedback, understand the con-
tribution of variables to the predictive model, and more importantly, offer a look into 
mispredictions or why models have missed or made the wrong decision about a student 
or another.

Our findings have shown that the interpretability of AI models offered a transparent 
view of how the model worked and what variables matter for our course achievement 
prediction. Interpretability made it clear why students were predicted and what varia-
bles were taken into account to produce the results (Došilović et al., 2018; Roscher et al., 
2020). Nonetheless, algorithmic predictions are made solely based on a data-driven 

Fig. 7  Waterfall plot (left) and ceteris paribus plot (right) of the students whose grade was mispredicted as 
lower than it actually was
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approach, and their connections with theory and pedagogy are not guaranteed. Of 
course, it is understood that, by design, ML learns from the data that reflects the behav-
ior of the majority—and this majority defines what the algorithm considers important 
and that can result in both plausible and implausible conclusions (Barredo Arrieta et al., 
2020). For instance, based on our results, one can tell students that the more they engage 
in highly cognitive tasks (formative assessment and constructing knowledge), the more 
they are likely to score higher grades. On the other hand, it does not seem plausible to 
suggest that reading less the course instructions, quizzes, or reading responses of their 
colleagues in the discussions will be detrimental to their achievement. Put another 
way, explaining the predictions is rather insufficient on its own and does not alleviate 
the need for a human (teacher or the student) who can interpret and make sense of the 
results (Peeters et al., 2021).

Explaining mispredictions has shown that algorithmic predictions may make the 
wrong decisions based on the “wrong predictors” (Chi & Wylie, 2014). In our case, stu-
dents were predicted far higher than their actual grades based on their engagement with 
the “passive” side of engagement which is less cognitively demanding and in fact, less 
likely to lead to better outcomes according to existing research or theory (i.e., ICAP) 
(Chi & Wylie, 2014). By the same token, students who were mispredicted with lower 
grades than their actual observed ones were predicted so because they did not engage 
much (i.e., excessively read the quiz) with passive engagement indicators (i.e., navigating 
the quiz module without actually attempting them). These results, while helpful, can-
not be taken as offering an “accurate” picture of what can be considered individualized 
support.

In comparison with previous research, our results show similarities and differences, 
which can be justified by the different context, models, and approach. In that, we studied 
medical education, using LMS data as well as focused on the local explanation and mis-
prediction. The work by (Lin et al., 2023) concluded that using explainable AI may have 
shown the important variables, but it is yet to be verified if these important variables are 
actually useful. Indeed, our study shows that transparency, usefulness, and pedagogical 
value may not converge to the same thing. In other words, transparency and interpret-
ability may be achieved without actual usefulness. Similarly, Jang et  al. (2022) showed 
that individual explainability can be useful for some cases and rather less useful for oth-
ers as a basis for intervention.

Taken together, our results show that AI explanations, while useful, are far from being 
practical without a nuanced human involvement (i.e., hybrid human-AI collaboration). 
This may be explained by the inherent deficiencies of online data that account for only 
the online part of learning. It can also be explained by the shortcomings and the lim-
its of AI. Instance-level explainability may allow us to understand individual algorithmic 
decisions, but they are far from perfect for being useful in offering personalization or 
individualized support. Possibly, for individualizing or personalizing recommendations, 
an idiographic approach that entails single-subject analysis using adequate data may be 
a better solution (Bobrowicz et al., 2024; Saqr & López-Pernas, 2021). It is yet to be veri-
fied whether the inclusion of more data to capture the multidimensional nature of learn-
ing can help AI algorithms deliver a more nuanced understanding of learners’ behavior. 
These results underscore the fact that a fully data-driven approach can’t be fully trusted 
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with generating plausible recommendations completely on its own and may require 
human assistance.

Conclusions
Online data and AI algorithms have inherent deficiencies and imperfections that may 
fail in capturing the complexities of human learning or align with educational objectives 
and can even lead to implausible conclusions. As such, AI alone may not provide the 
practical recommendations or the individualized support that educators long for. While 
explainable AI offers insights into important variables affecting course achievement, it 
has demonstrated an obvious gap between educational theories and practice and algo-
rithmic predictions. This disconnection underscores the need for a hybrid human-AI 
approach that combines contextual understanding, human expertise and technology. A 
more comprehensive approach that considers the multidimensional nature of learning 
and incorporates detailed individual analysis can offer a deeper understanding of learner 
behavior.
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